Deutsch | English | Español | Français | Italiano | Português | Русский | العربية | 日本語 | 简体中文 | 繁體中文 | 한국의 | Türk | Polski
LOGO
Global B2B portal for electronics and ICT industry
Product / Service Supplier Catalogs & Literature    
Search
or
home Product News Catalogs Web TV News & Topics Featured Articles Trade Shows Sourcing Help My allitwares
Featured Articles Content
allitwares > Featured Articles > Obtaining data from the “brains” of cars

Obtaining data from the “brains” of cars
Author: Åse Dragland
Source From: SINTEF
Posted Date: 2013-11-14

 When the Nissan Group last year contributed to the cause of research by allowing SINTEF to carry out direct logging of data from its “Leaf” cars, this represented a milestone.

“We obtained access to invaluable data, and are now able to see into the very “brain” of a car and measure such things as how much energy is consumed in propulsion and climate control, and how much is generated during braking,” Astrid Bjørgen Sund and Tomas Levin at SINTEF Technology and Society explain.
Smart data capture
Researchers call this “smart data capture”. Obtaining data from a car’s existing sensors is a method which the department is now employing in a number of projects.

The scientists equip drivers and vehicles participating in the projects with smartphones or web tablets which enable them to collect valuable data for use in research.

“Modern vehicles represent a goldmine of information about how cars are used and the infrastructure they utilise. If cars were able to Tweet everything they know, we could tackle many exciting challenges,” says Tomas Levin.

“We are still looking into the same problems as before in the field of transport, but smart data capture provides a completely new source of precise data,” says Bjørgen Sund. “We can identify problems covering larger geographical areas and with sufficient data we can provide a better foundation for the major transport-related decisions which must be made.”
Modelling the E39
An example the researchers cite is European Route E39 between Trondheim and Kristiansand, which is currently being planned. Here, fuel and energy consumption will be strongly influenced by the design of the road, with its curves, ascents and descents, toll stations and tunnels, and what sort of terrain it passes through.

In connection with major projects of this sort, researchers normally base their calculations on average figures from Europe. Using smart data capture based on real-time data, they are now able to carry out more realistic calculations.

“We believe, for example, that it is difficult to predict energy consumption on twisting Norwegian roads based on European average figures,” says Levin. “So in order to perform calculations for the new E39 we select existing road sections which resemble the new one and carry out our measurements on these.”
Documenting effects
The construction of some stretches of European Routes E18 and E6, for example, is similar to that planned for the projected E39. The researchers divide the road network up into small, homogeneous sections of around 200 metres, carrying out measurements at least once per second.

In research circles there is debate about whether traffic flow or high velocities have most effect on energy consumption. This method uses direct measurements to make it possible to document actual effects, rather than relying on assumptions. This can provide a more objective basis for decision-making.
The challenge
At present the research institutes rely on transport operators, motorists and car manufacturers to provide access to data so that they can make the best possible calculations.

“We have often dreamt of being able to log data directly from vehicles, but until now no car manufacturer has been willing to release such data. Nissan was the first, and the commercial vehicle division of Volvo has also subsequently contributed data,” says Astrid Bjørgen Sund.

In her opinion this could be done, in principle, for all vehicles on Norwegian roads, and would create a databank which would be of enormous value for the nation. In a slightly longer time frame, information extracted from such a databank will provide a significantly better foundation for decision-making in major Norwegian road-building projects.

Tags:

Original Hyperlink: http://www.sintef.no/home/Press-Room/Research-News/Obtaining-data-from-the-brain..

For more information from this magazine/website? Please click here http://www.sintef.no/

Note: The copyright and the ownship of the brand, product names, product numbers, and content mentioned belongs to their repective companies.

comments powered by Disqus
Latest News

‧2014-05-22
Organizations Unprepared to Tackle Next Wave of Technology Trends

‧2014-05-09
Smaller Microchips Keep their Cool

‧2014-04-30
Information storage for the next generation of plastic computers

‧2014-04-29
Smart physical fusing can help secure datacenter uptime

‧2014-04-28
Gas Technology: Digital Age management

Related Catalogs
Featured Pages
5 Axis Machining CenterActuatorsAir ToolsAll-in-One Computers
Aluminum ExtrusionsAntennaAudio Power AmplifierAutomatic Coil Winding Machine
Brushless DC MotorsCable AssembliesCapacitorsCar Drive Recorders
CCTV CameraCircuit BreakersCircular ConnectorsClamp Meters
CNC EDMCNC Precision Machining PartsComputer CaseComputer Cooling Fan
Control ValvesCPU Heat SinksCrystal OscillatorsCustom PCB Manufacture
CylindersD-subminiature ConnectorsData Acquisition BoardDC/DC Converters
Die CastingDigital SignageDimmers and Lighting ControlsEarphone and Headset
Ethernet I/O ModulesFanless Embedded ComputerFlash Memory DeviceGear Reducer
Global Position SystemGrinding CenterHeating ElementIC Sockets
InductorIndustrial Ethernet SwitchesIndustrial RobotInjection Molding
iPhone/iPad AccessoriesKeyboard & KeypadKVM SwitchLCD Modules
Lead FramesLED Driver ICsLED LightsMachining Center
Metal EnclosuresMetal Stamping MoldsMicroprocessorOpen Frame Monitor
OscilloscopesPCB EquipmentPlastic FilmsPlastic Housing and Parts
PLCsPOS SystemsPower AdapterPower Supply
Power ToolsRAID ServersRelaysResistor
RF Microwave ConnectorsRFID DevicesSecurity Intercom SystemsServer
Servo MotorSingle Board ComputerSmart PhoneSolenoids
Switching HubTablet PCsTouch Panel ComputerUPS
VoIP Gateway and PhoneWireless Networking  
Contents
· Home
· Product News
· Catalogs
· Web TV
· News & Topics
· Features Articles
· Trade Show
· Sourcing Help
· My Allitwares
Special Zone
· Directory
· Trade Show Supplement
2014 Hannover
Allitwares.com
· About Us
· Promote Your Business
· Advertise
· Partner with Us
· Press Release
· Contact Us
· Term of Use
· Privacy Policy
· Starter Program
· Sitemap
B2B Web Portal Alliance
· Allitwares.com
· Allmetalworking.com
· Allbiomedical.com
· Allautowares.com
Buy Engineer Sample Kits
OEM Sourcing
Language
· Deutsch
· English
· Español
· Français
· Italiano
· Português
· Русский
· العربية
· 日本語
· 简体中文
· 繁體中文
· 한국의
· Türk
· Polski
 
   

Copyrights © 2012 Allitwares Corporation All Rights Reserved. www.allitwares.com is a Division of Allitwares Corporation
www.allitwares.com is a B2B Trade Portal | B2B Web Portal |B2B Marketplace for Electronics and ICT Industry